
Research

Specification
gaming: the
flip side of AI
ingenuity
April 21, 2020

Specification gaming is a behaviour that satisfies the literal specification of an

objective without achieving the intended outcome. We have all had experiences with

specification gaming, even if not by this name. Readers may have heard the myth of

King Midas and the golden touch, in which the king asks that anything he touches be

turned to gold - but soon finds that even food and drink turn to metal in his hands. In

the real world, when rewarded for doing well on a homework assignment, a student

might copy another student to get the right answers, rather than learning the

material - and thus exploit a loophole in the task specification.

This problem also arises in the design of artificial agents. For example, a

reinforcement learning agent can find a shortcut to getting lots of reward without

completing the task as intended by the human designer. These behaviours are

common, and we have collected around 60 examples so far (aggregating existing lists

and ongoing contributions from the AI community). In this post, we review possible

causes for specification gaming, share examples of where this happens in practice,

and argue for further work on principled approaches to overcoming specification

problems.

Research Blog Impact
Safety

& Ethics
About Careers

https://en.wikipedia.org/wiki/Midas
http://tinyurl.com/specification-gaming
https://arxiv.org/abs/1803.03453
https://www.gwern.net/Tanks#alternative-examples
https://docs.google.com/forms/d/e/1FAIpQLSeQEguZg4JfvpTywgZa3j-1J-4urrnjBVeoAO7JHIH53nrBTA/viewform
https://www.deepmind.com/
https://www.deepmind.com/research
https://www.deepmind.com/blog
https://www.deepmind.com/impact
https://www.deepmind.com/safety-and-ethics
https://www.deepmind.com/about
https://www.deepmind.com/careers


Let's look at an example. In a Lego stacking task, the desired outcome was for a red

block to end up on top of a blue block. The agent was rewarded for the height of the

bottom face of the red block when it is not touching the block. Instead of performing

the relatively difficult maneuver of picking up the red block and placing it on top of

the blue one, the agent simply flipped over the red block to collect the reward. This

behaviour achieved the stated objective (high bottom face of the red block) at the

expense of what the designer actually cares about (stacking it on top of the blue

one).

We can consider specification gaming from two different perspectives. Within the

scope of developing reinforcement learning (RL) algorithms, the goal is to build

agents that learn to achieve the given objective. For example, when we use Atari

games as a benchmark for training RL algorithms, the goal is to evaluate whether our

algorithms can solve difficult tasks. Whether or not the agent solves the task by

exploiting a loophole is unimportant in this context. From this perspective,

Source: Data-Efficient Deep Reinforcement Learning for Dexterous Manipulation (Popov et al,
2017)

https://arxiv.org/abs/1704.03073


specification gaming is a good sign - the agent has found a novel way to achieve the

specified objective. These behaviours demonstrate the ingenuity and power of

algorithms to find ways to do exactly what we tell them to do.

However, when we want an agent to actually stack Lego blocks, the same ingenuity

can pose an issue. Within the broader scope of building aligned agents that achieve

the intended outcome in the world, specification gaming is problematic, as it involves

the agent exploiting a loophole in the specification at the expense of the intended

outcome. These behaviours are caused by misspecification of the intended task,

rather than any flaw in the RL algorithm. In addition to algorithm design, another

necessary component of building aligned agents is reward design.

Designing task specifications (reward functions, environments, etc.) that accurately

reflect the intent of the human designer tends to be difficult. Even for a slight

misspecification, a very good RL algorithm might be able to find an intricate solution

that is quite different from the intended solution, even if a poorer algorithm would

not be able to find this solution and thus yield solutions that are closer to the

https://medium.com/@deepmindsafetyresearch/scalable-agent-alignment-via-reward-modeling-bf4ab06dfd84


intended outcome. This means that correctly specifying intent can become more

important for achieving the desired outcome as RL algorithms improve. It will

therefore be essential that the ability of researchers to correctly specify tasks keeps

up with the ability of agents to find novel solutions.

We use the term task specification in a broad sense to encompass many aspects of

the agent development process. In an RL setup, task specification includes not only

reward design, but also the choice of training environment and auxiliary rewards. The

correctness of the task specification can determine whether the ingenuity of the

agent is or is not in line with the intended outcome. If the specification is right, the

agent's creativity produces a desirable novel solution. This is what allowed AlphaGo

to play the famous Move 37, which took human Go experts by surprise yet which was

pivotal in its second match with Lee Sedol. If the specification is wrong, it can

produce undesirable gaming behaviour, like flipping the block. These types of

solutions lie on a spectrum, and we don't have an objective way to distinguish

between them.

We will now consider possible causes of specification gaming. One source of reward

function misspecification is poorly designed reward shaping. Reward shaping makes

it easier to learn some objectives by giving the agent some rewards on the way to

solving a task, instead of only rewarding the final outcome. However, shaping rewards

can change the optimal policy if they are not potential-based. Consider an agent

controlling a boat in the Coast Runners game, where the intended goal was to finish

the boat race as quickly as possible. The agent was given a shaping reward for hitting

green blocks along the race track, which changed the optimal policy to going in

circles and hitting the same green blocks over and over again.

https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol#Game_2
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf
https://openai.com/blog/faulty-reward-functions/


Specifying a reward that accurately captures the desired final outcome can be

challenging in its own right. In the Lego stacking task, it is not sufficient to specify

that the bottom face of the red block has to be high off the floor, since the agent can

simply flip the red block to achieve this goal. A more comprehensive specification of

the desired outcome would also include that the top face of the red block has to be

above the bottom face, and that the bottom face is aligned with the top face of the

blue block. It is easy to miss one of these criteria when specifying the outcome, thus

making the specification too broad and potentially easier to satisfy with a

degenerate solution.

Instead of trying to create a specification that covers every possible corner case, we

could learn the reward function from human feedback. It is often easier to evaluate

whether an outcome has been achieved than to specify it explicitly. However, this

approach can also encounter specification gaming issues if the reward model does

not learn the true reward function that reflects the designer's preferences. One

possible source of inaccuracies can be the human feedback used to train the reward

model. For example, an agent performing a grasping task learned to fool the human

evaluator by hovering between the camera and the object.

Source: Faulty Reward Functions in the Wild (Amodei & Clark, 2016)

https://deepmind.com/blog/article/learning-through-human-feedback
https://openai.com/blog/deep-reinforcement-learning-from-human-preferences/


The learned reward model could also be misspecified for other reasons, such as poor

generalisation. Additional feedback can be used to correct the agent's attempts to

exploit the inaccuracies in the reward model.

Another class of specification gaming examples comes from the agent exploiting

simulator bugs. For example, a simulated robot that was supposed to learn to walk

figured out how to hook its legs together and slide along the ground.

Source: Deep Reinforcement Learning From Human Preferences (Christiano et al, 2017)

Source: AI Learns to Walk (Code Bullet, 2019)

https://www.youtube.com/watch?v=K-wIZuAA3EY&feature=youtu.be&t=486


At first sight, these kinds of examples may seem amusing but less interesting, and

irrelevant to deploying agents in the real world, where there are no simulator bugs.

However, the underlying problem isn’t the bug itself but a failure of abstraction that

can be exploited by the agent. In the example above, the robot's task was

misspecified because of incorrect assumptions about simulator physics.

Analogously, a real-world traffic optimisation task might be misspecified by

incorrectly assuming that the traffic routing infrastructure does not have software

bugs or security vulnerabilities that a sufficiently clever agent could discover. Such

assumptions need not be made explicitly – more likely, they are details that simply

never occurred to the designer. And, as tasks grow too complex to consider every

detail, researchers are more likely to introduce incorrect assumptions during

specification design. This poses the question: is it possible to design agent

architectures that correct for such false assumptions instead of gaming them?

One assumption commonly made in task specification is that the task specification

cannot be affected by the agent's actions. This is true for an agent running in a

sandboxed simulator, but not for an agent acting in the real world. Any task

specification has a physical manifestation: a reward function stored on a computer,

or preferences stored in the head of a human. An agent deployed in the real world

can potentially manipulate these representations of the objective, creating a reward

tampering problem. For our hypothetical traffic optimisation system, there is no clear

distinction between satisfying the user's preferences (e.g. by giving useful

directions), and influencing users to have preferences that are easier to satisfy (e.g.

by nudging them to choose destinations that are easier to reach). The former

satisfies the objective, while the latter manipulates the representation of the

objective in the world (the user preferences), and both result in high reward for the AI

system. As another, more extreme example, a very advanced AI system could hijack

the computer on which it runs, manually setting its reward signal to a high value.

To sum up, there are at least three challenges to overcome in solving specification

gaming:

How do we faithfully capture the human concept of a given task in a reward

function?

How do we avoid making mistakes in our implicit assumptions about the domain,

or design agents that correct mistaken assumptions instead of gaming them?

How do we avoid reward tampering?

https://medium.com/@deepmindsafetyresearch/designing-agent-incentives-to-avoid-reward-tampering-4380c1bb6cd
https://pubsonline.informs.org/doi/10.1287/isre.2013.0497


While many approaches have been proposed, ranging from reward modeling to agent

incentive design, specification gaming is far from solved. The list of specification

gaming behaviours demonstrates the magnitude of the problem and the sheer

number of ways the agent can game an objective specification. These problems are

likely to become more challenging in the future, as AI systems become more capable

at satisfying the task specification at the expense of the intended outcome. As we

build more advanced agents, we will need design principles aimed specifically at

overcoming specification problems and ensuring that these agents robustly pursue

the outcomes intended by the designers.

Notes

We would like to thank Hado van Hasselt and Csaba Szepesvari for their feedback on

this post.

Custom figures by Paulo Estriga, Aleks Polozuns, and Adam Cain.

Authors

Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, Matthew Rahtz, Tom Everitt,

Ramana Kumar, Zac Kenton, Jan Leike, Shane Legg

Published

April 21, 2020

Tags

Research

Share

http://tinyurl.com/specification-gaming
https://www.deepmind.com/blog-categories/research
https://twitter.com/intent/tweet?url=https://deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity&text=DeepMind:%20Specification%20gaming:%20the%20flip%20side%20of%20AI%20ingenuity
https://www.facebook.com/sharer/sharer.php?u=https://deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://www.linkedin.com/shareArticle?url=https://deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity


Research Blog Impact Safety & Ethics About Careers

Press

Terms and conditions

Privacy policy

Vulnerability disclosure

Human rights policy

Modern slavery statement

Alphabet Inc.

https://www.deepmind.com/research
https://www.deepmind.com/blog
https://www.deepmind.com/impact
https://www.deepmind.com/safety-and-ethics
https://www.deepmind.com/about
https://www.deepmind.com/careers
mailto:press@deepmind.com
https://www.deepmind.com/terms-and-conditions
https://www.deepmind.com/privacy-policy
https://g.co/vrp
https://www.deepmind.com/human-rights-policy
https://www.gstatic.com/gumdrop/sustainability/2020-google-modern-slavery-statement.pdf
https://abc.xyz/
https://twitter.com/deepmind
https://www.youtube.com/@Google_DeepMind
https://www.instagram.com/deepmind/
https://www.linkedin.com/company/deepmind/
https://github.com/deepmind

