A short introduction to machine learning

by Richard Ngo 30th Aug 2021

24

Al Frontpage

Despite the current popularity of machine learning, | haven’t found any short introductions to
it which quite match the way | prefer to introduce people to the field. So here’s my own.
Compared with other introductions, I've focused less on explaining each concept in detail, and
more on explaining how they relate to other important concepts in Al, especially in diagram
form. If you’re new to machine learning, you shouldn’t expect to fully understand most of the
concepts explained here just after reading this post - the goal is instead to provide a broad
framework which will contextualise more detailed explanations you’ll receive from elsewhere.

I’'m aware that high-level taxonomies can be controversial, and also that it’s easy to fall into the
illusion of transparency when trying to introduce a field; so suggestions for improvements are

very welcome!

The key ideas are contained in this summary diagram:

https://www.alignmentforum.org/tag/ai
https://en.wikipedia.org/wiki/Illusion_of_transparency
https://www.alignmentforum.org/posts/qE73pqxAZmeACsAdF/a-short-introduction-to-machine-learning
https://www.alignmentforum.org/users/ricraz

Artificial
intelligence

Al tasks Al techniques

Answering questions
Recognizing images
Generating content
Following instructions
Controlling robots

Logic
Search
Learning

Symbolic Al

Machine Machme
learning IeaLnlrlg
tasks techniques
Supervised learning Statistical modeling
Self-supervised learning Graphical modeling
Reinforcement learning Deep learning
v \
Optimisation Neural network
techniques architectures
Gradient descent Convolutional networks
Backpropagation Recurrent networks
Momentum Transformers

First, some quick clarifications:

e None of the boxes are meant to be comprehensive; we could add more items to any of
them. So you should picture each list ending with “and others”.

e The distinction between tasks and technigues is not a firm or standard categorisation; it’s
just the best way I've found so far to lay things out.

e The summary is explicitly from an Al-centric perspective. For example, statistical
modeling and optimization are fields in their own right; but for our current purposes we
can think of them as machine learning techniques.

Let’s dig into each part of the diagram now, starting from the top.

Paradigms of artificial intelligence

The field of artificial intelligence aims to develop computer programs that are able to
perform useful tasks like answering questions, recognizing images, and so on. It got started
around the 1950s. Historically, there have been several different approaches to Al. In the first

few decades, the dominant paradigm was symbolic Al, which focused on representing
problems using statements in formal languages (like logic, or programming languages), and
searching for solutions by manipulating those representations according to fixed rules. For
example, a symbolic Al can represent a game of chess using a set of statements about where
the pieces currently are, and a set of statements about where the pieces are allowed to move
(you can only move bishops diagonally, you can’t move your king into check, etc). It can then
play chess by searching through possible moves which are consistent with all of those
statements. The power of symbolic search-based Al was showcased by Deep Blue, the chess Al
that beat Kasparov in 1997.

However, the symbolic representations designed by Al researchers turned out to be far too
simple: there are very few real-world phenomena easily describable using formal languages
(despite valiant efforts). Since the 1990s, the dominant paradigm in Al has instead been
machine learning. In machine learning, instead of manually hard-coding all the details of Als
ourselves, we specify models with free parameters that are learned automatically from the
data they’re given. For example, in the case of chess, instead of using a fixed algorithm like
Deep Blue does, a ML chess player would choose moves using parameters that start off
random, and gradually improve those parameters based on feedback on its moves: this is
known as the learning, training or optimization process.* In theory, statistical models
(including simple models like linear regressions) also fit parameters to the data they’re given.
However, the two fields are distinguished by the scales at which they operate: the biggest
successes of machine learning have come from training models with billions of parameters on
huge amounts of data. This is done using deep learning, which involves training neural
networks with many layers using powerful optimization techniques like gradient descent and
backpropagation. Neural networks have been around since the beginning of Al, but they only
became the dominant paradigm in the early 2010s, after increases in compute availability
allowed us to train much bigger networks. Let’s explore the components of deep learning in
more detail now.

Deep learning: neural networks and optimization

Neural networks are a type of machine learning model inspired by the brain. As with all
machine learning models, they take in input data and produce corresponding output data, in a
way which depends on the values of their parameters. The interesting part is how they do so:
by passing that data through several layers of simple calculations, analogous to how brains
process data by passing it through layers of interconnected neurons. In the diagram below,
each circle represents an “artificial neuron”; networks with more than one layer of neurons

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/Cyc

between the input and the output layers are known as deep neural networks. These days,
almost all neural networks are deep, and some have hundreds of layers.

Deep neural network

i hidden layver 1 hidden layer 2 hidden layer 3
input layer

\._.f

Each artificial neuron receives signals from neurons in the previous layer, combines them
together into a single value (known as its activation), and then passes that value on to
neurons in the next layer. As in biological brains, the signal that is passed between a pair of
artificial neurons is affected by the strength of the connection between them - so for each of
the lines in the diagram we need to store a single number representing the strength of the
connection, known as a weight. The weights of a neuron’s connections to the previous layer
determines how strongly it activates for any given input. (Compared with biological brains,
artificial neural networks tend to be much more strictly organised into layers.)

These weights are not manually specified, but instead they are learned via a process of
optimization, which finds weights that make the network score highly on whatever metric
we’re using. (This metric is known as an objective function or loss function; it’s evaluated over
whatever dataset we’re using during training.) By far the most common optimization algorithm
is gradient descent, which initially sets weights to arbitrary values, and then at each step
changes them so that the network does slightly better on its objective function (in more
technical terms, it updates each weight in the direction of its gradient with respect to the
objective function). Gradient descent is a very general optimization algorithm, but it’s
particularly efficient when applied to neural networks because at each step the gradients of
the weights can be calculated layer-by-layer, starting from the last layer and working
backwards, using the backpropagation algorithm. This allows us to train networks which
contain billions of weights, each of which is updated billions of times.

As a result of optimization, the weights end up storing information which allows different
neurons to recognise different features of the input. As an example, consider a neural network
known as Inception, which was trained to classify images. Each neuron in Inception’s input
layer was assigned to a single pixel of the input image. Neurons in each successive layer then
learned to activate in response to increasingly high-level features of the input image. The
diagram shows some of the patterns recognised by neurons in five consecutive layers from the
Inception model, in each case by combining patterns from the previous layer - from colours to
(Gabor filters for) textures to lines to angles to curves. This goes on until the last layer, which
represents the network’s final output - in this case the probabilities of the input image
containing cats, dogs, and various other types of object.

conv2d0 conv2d1 conv2d2 3a 3b
Early Curves 11 neurons
Proto-Lines 37 neurons Tiny Curves 11 neurons & L
Complex Gabors 9 neurons “’E_ ’:: . TS "3
g # Lines 36 neurons
Color Contrast 8 neurons o £
TTIT Pl P
i \ Tl i il] Curves 10 neurons
Gabor Like 11 neurons Lines 9 neurons h % @ & m Lo % N % ﬁ
™Y 2.
i R0 /
wares e | (M EEE | SEEES el ik
N, ¥ Angles 8 neurons 7, & P
HERDD Tupes Z TREL®S
N e S AN
b Low Frequency 17 neurons Shifted Lines 16 neurons /2 =19 @

UEddk

< =N =0
will = RE

*ﬂ‘_ Line Misc 14 neurons
AREEZ

One last point about neural networks: in our earlier neural network diagram, every neuron in a
given layer was connected to every neuron in the layers next to it. This is known as a fully-
connected network, the most basic type of neural network. In practice, fully-connected
networks are seldom used; instead there are a whole range of different neural network
architectures which connect neurons in different ways. Three of the most prominent
(convolutional networks, recurrent networks, and transfomers) are listed in the original
summary diagram; however, | won’t cover any of the details here.

Machine learning tasks

I've described how neural networks (and other machine learning models) can be trained to
perform different tasks. The three most prominent categories of tasks are supervised, self-
supervised, and reinforcement learning, which each involve different types of data and
objective functions. Supervised learning requires a dataset where each datapoint has a
corresponding label. The objective in supervised learning is for a model to predict the labels
which correspond to each datapoint. For example, the image classification network we

discussed above was trained on a dataset of images, each labeled with the type of object it
contained. Alternatively, if the labels had been ratings of how beautiful each image was, we
could have used supervised learning to produce a network that rated image beauty. These two
examples showcase different types of supervised learning: the former is a classification
problem (requiring the prediction of discrete categories) and the latter is a regression
problem (requiring the prediction of continuous values). Historically, supervised learning has
been the most studied task in machine learning, and techniques devised to solve it have been
extensively used as parts of the solutions to the other two.

One downside of supervised learning is that labeling a dataset usually needs to be done
manually by humans, which is expensive and time-consuming. Learning from an unlabeled
dataset is known as unsupervised learning. In practice, this is typically done by finding
automatic ways to convert an unlabeled dataset into a labeled dataset, which is known as self-
supervised learning. The standard example of self-supervised learning is next-word
prediction: training a model to predict, from any given text sequence in an unlabeled dataset,
which word follows that sequence. Some impressive applications of self-supervised learning
are GPT-2 and GPT-3 for language, and Dall-E for images.

Finally, in reinforcement learning, the data source is not a fixed dataset, but rather an
environment in which the Al takes actions and receives observations - essentially as if it’s
playing a video game. After each action, the agent also receives a reward (similar to the score
in a video game), which is used to reinforce the behaviour that leads to high rewards, and
reduce the behaviour that leads to low rewards. Since actions can have long-lasting
consequences, the key difficulty in reinforcement learning is determining which actions are
responsible for which rewards - a problem known as credit assignment. So far the most
impressive demonstrations of reinforcement learning have been in training agents to play
board games and esports - most notably AlphaGo, AlphaStar and OpenAl Five.**

Solving real-world tasks

We’re almost done! But | don’t think that even a brief summary of Al and machine learning can
be complete without adding three more concepts. They don’t quite fit into the taxonomy I've
been using so far, so I've modified the original summary diagram to fit them in:

https://openai.com/blog/better-language-models/
https://en.wikipedia.org/wiki/GPT-3
https://openai.com/blog/dall-e/
https://en.wikipedia.org/wiki/AlphaGo
https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning
https://openai.com/blog/openai-five/

Artificial
intelligence

Al tasks Al techniques

Answering questions
Recognizing images
Generating content
Following instructions
Controlling robots

1

Logic
Search
Learning

Symbolic Al

-——

. Machine
' Design| Machine learning
\ training ! learning techniques
\\\ Setup \ tasks
el \(Supervised learning Statistical modeling
Transfer ~~~ - Self-supervised learning Graphical modeling
1 | Reinforcement learning Deep learning
I' e AN
\
N Optimisation Neural network
\\ techniques architectures
SO Gradient descent Convolutional networks
Generalization™~~ - __ Backpropagation Recurrent networks
Momentum Transformers

Let’s think of these three dotted lines I've added as ways to connect the different levels. The
ultimate goal of the field of Al is to create systems that can perform valuable tasks in the real
world. In order to apply machine learning techniques to achieve this, we need to design and
implement a supervised/self-supervised/reinforcement training setup which allows systems
to learn the necessary abilities. A key element is designing datasets or training environments
which are as similar as possible to the real-world task. In reinforcement learning, this also
requires designing a reward function to specify the desired behaviour, which is often more

difficult than we expect.

But no matter how good our training setup, we will face two problems. Firstly, we can only
ever train our models on a finite amount of data. For example, when training an Al to play
chess, there are many possible board positions that it will never experience. So our
optimization algorithms could in theory produce chess Als that can only play well on positions
that they already experienced during training. In practice this doesn’t happen: instead deep
learning tends to generalise incredibly well to examples it hasn’t seen already. How and why it
does so is, however, still poorly-understood.

https://deepmind.com/blog/article/Specification-gaming-the-flip-side-of-AI-ingenuity

Secondly, due to the immense complexity of the real world, there will be ways in which our
training setups are incomplete or biased representations of the real-world tasks we really care
about. For example, consider an Al which has been trained to play chess against itself, and
which now starts to play against a human who has very different strengths and weaknesses.
Playing well against the human requires it to transfer its original experience to this new task
(although the line between generalisation to different examples of “the same task” versus
transfer to “a new task” is very blurry). We're also beginning to see neural networks whose
skills transfer to new tasks which differ significantly from the ones on which they were trained
- most notably the GPT-3 language model, which can perform a very wide range of tasks®. As
we develop increasingly powerful Als that perform increasingly important real-world tasks,
ensuring their safe behaviour will require a much better understanding of how their skills and
motivations will transfer from their training environments to the wider world.

Footnotes

* Learning, training and optimization have slightly different connotations, but they all refer to
the process by which a machine learning system updates its parameters based on data.

** Here’s a more detailed breakdown of some of the tasks and techniques corresponding to
these three types of learning. I've only mentioned a few of these terms so far; I've included the
others to help you classify them in case you’ve seen them before, but don’t worry if many of
them are unfamiliar.

https://www.alignmentforum.org/posts/6Hee7w2paEzHsD6mn/collection-of-gpt-3-results
https://www.alignmentforum.org/posts/6Hee7w2paEzHsD6mn/collection-of-gpt-3-results

Self-supervised Supervised Reinforcement

learning learning learning
Tasks / /
Image generation Regression Exploration
Language modeling Classification Temporal credit
Behavioral cloning Reward modeling assignment
Multiagent credit
assignment
Autoregression Most neural networks Q-learning
Techniques | Generative adversarial Support vector Policy gradients
networks machines Self-play
Diffusion modeling Gaussian processes Intrinsic motivation

Al 2 Frontpage

Mentioned in

33 AGI Safety Fundamentals curriculum and application

1 comment, sorted by top scoring

Kerrigan % 3mo @ < 1

How was Dall-E based on self-supervised learning? The datasets of images weren’t labeled by humans? If not, how does it

get form text to image?

Moderation Log

https://www.alignmentforum.org/tag/ai
https://www.alignmentforum.org/moderation
https://www.alignmentforum.org/users/kerrigan
https://www.alignmentforum.org/posts/Zmwkz2BMvuFFR8bi3/agi-safety-fundamentals-curriculum-and-application
https://www.alignmentforum.org/posts/qE73pqxAZmeACsAdF/a-short-introduction-to-machine-learning?commentId=2j7mdYyNbgPjPbKeD

