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MIRIʼs mission is “to ensure that the creation of smarter-than-human artificial intelligence has a positive impact.” How can
we ensure any such thing? Itʼs a daunting task, especially given that we donʼt have any smarter-than-human machines to
work with at the moment. In the previous post I discussed four background claims
(https://intelligence.org/2015/07/24/four-background-claims/) that motivate our mission; in this post I will describe our
approach to addressing the challenge.

This challenge is sizeable, and we can only tackle a portion of the problem. For this reason, we specialize. Our two biggest
specializing assumptions are as follows:

We focus on scenarios where smarter-than-human machine intelligence is first created in de novo so�ware
systems (as opposed to, say, brain emulations).

This is in part because it seems di�icult to get all the way to brain emulation before someone reverse-engineers the
algorithms used by the brain and uses them in a so�ware system, and in part because we expect that any highly reliable
AI system will need to have at least some components built from the ground up for safety and transparency.
Nevertheless, it is quite plausible that early superintelligent systems will not be human-designed so�ware, and I
strongly endorse research programs that focus on reducing risks along the other pathways.

We specialize almost entirely in technical research.

We select our researchers for their proficiency in mathematics and computer science, rather than forecasting expertise
or political acumen. I stress that this is only one part of the puzzle: figuring out how to build the right system is useless if
the right system does not in fact get built, and ensuring AI has a positive impact is not simply a technical problem. It is
also a global coordination problem, in the face of short-term incentives to cut corners. Addressing these non-technical
challenges is an important task that we do not focus on.

In short, MIRI does technical research to ensure that de novo AI so�ware systems will have a positive impact. We do not
further discriminate between di�erent types of AI so�ware systems, nor do we make strong claims about exactly how
quickly we expect AI systems to attain superintelligence. Rather, our current approach is to select open problems using the
following question:

What would we still be unable to solve, even if the challenge were far simpler?

For example, we might study AI alignment problems that we could not solve even if we had lots of computing power and
very simple goals.

We then filter on problems that are (1) tractable, in the sense that we can do productive mathematical research on them
today; (2) uncrowded, in the sense that the problems are not likely to be addressed during normal capabilities research; and
(3) critical, in the sense that they could not be safely delegated to a machine unless we had first solved them ourselves.
(Since the goal is to design intelligent machines, there are many technical problems that we can expect to eventually
delegate to those machines. But it is di�icult to trust an unreliable reasoner with the task of designing reliable reasoning!)

These three filters are usually uncontroversial. The controversial claim here is that the above question — “what would we be
unable to solve, even if the challenge were simpler?” — is a generator of open technical problems for which solutions will
help us design safer and more reliable AI so�ware in the future, regardless of their architecture. The rest of this post is
dedicated to justifying this claim, and describing the reasoning behind it.

1. Creating a powerful AI system without understanding why it works is dangerous.

A large portion of the risk from machine superintelligence comes from the possibility of people building systems that they
do not fully understand (https://intelligence.org/2013/08/25/transparency-in-safety-critical-systems/).

Currently, this is commonplace in practice: many modern AI researchers are pushing the capabilities of deep neural
networks in the absence of theoretical foundations that describe why theyʼre working so well or a solid idea of what goes on
beneath the hood. These shortcomings are being addressed over time: many AI researchers are currently working on
transparency tools for neural networks, and many more are working to put theoretical foundations beneath deep learning
systems. In the interim, using trial and error to push the capabilities of modern AI systems has led to many useful
applications.

When designing a superintelligent agent, by contrast, we will want an unusually high level of confidence in its safety before
we begin online testing: trial and error alone wonʼt cut it, in that domain.

To illustrate, consider a study by Bird and Layzell in 2002 (http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1004522).
They used some simple genetic programming to design an oscillating circuit on a circuit board. One solution that the
genetic algorithm found entirely avoided using the built-in capacitors (an essential piece of hardware in human-designed
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oscillators). Instead, it repurposed the circuit tracks on the motherboard as a radio receiver, and amplified an oscillating
signal from a nearby computer.

This demonstrates that powerful search processes can o�en reach their goals via unanticipated paths. If Bird and Layzell
were hoping to use their genetic algorithm to find code for a robust oscillating circuit — one that could be used on many
di�erent circuit boards regardless of whether there were other computers present — then they would have been sorely
disappointed. Yet if they had tested their algorithms extensively on a virtual circuit board that captured all the features of
the circuit board that they thought were relevant (but not features such as “circuit tracks can carry radio signals”), then they
would not have noticed the potential for failure during testing. If this is a problem when handling simple genetic search
algorithms, then it will be a much larger problem when handling smarter-than-human search processes.

When it comes to designing smarter-than-human machine intelligence, extensive testing is essential, but not su�icient: in
order to be confident that the system will not find unanticipated bad solutions when running in the real world, it is
important to have a solid understanding of how the search process works and why it is expected to generate only
satisfactory solutions in addition to empirical test data.

MIRIʼs research program is aimed at ensuring that we have the tools needed to inspect and analyze smarter-than-human
search processes before we deploy them.

By analogy, neural net researchers could probably have gotten quite far without having any formal understanding of
probability theory. Without probability theory, however, they would lack the tools needed to understand modern AI
algorithms: they wouldnʼt know about Bayes nets, they wouldnʼt know how to formulate assumptions like “independent
and identically distributed,” and they wouldnʼt quite know the conditions under which Markov Decision Processes work and
fail. They wouldnʼt be able to talk about priors, or check for places where the priors are zero (and therefore identify things
that their systems cannot learn). They wouldnʼt be able to talk about bounds on errors and prove nice theorems about
algorithms that find an optimal policy eventually.

They probably could have still gotten pretty far (and developed half-formed ad-hoc replacements for many of these ideas),
but without probability theory, I expect they would have a harder time designing highly reliable AI algorithms. Researchers
at MIRI tend to believe that similarly large chunks of AI theory are still missing, and those are the tools that our research
program aims to develop.

2. We could not yet create a beneficial AI system even via brute force.

Imagine you have a Jupiter-sized computer and a very simple goal: Make the universe contain as much diamond as possible.
The computer has access to the internet and a number of robotic factories and laboratories, and by “diamond” we mean
carbon atoms covalently bound to four other carbon atoms. (Pretend we donʼt care how it makes the diamond, or what it
has to take apart in order to get the carbon; the goal is to study a simplified problem.) Letʼs say that the Jupiter-sized
computer is running python. How would you program it to produce lots and lots of diamond?

As it stands, we do not yet know how to program a computer to achieve a goal such as that one.

We couldnʼt yet create an artificial general intelligence by brute force, and this indicates that there are parts of the problem
we donʼt yet understand.

There are a number of AI tasks that we could brute-force. For example, we could write a program that would be really, really
good at solving computer vision problems: if we had an indestructible box that produced pictures and questions about
them, waited for answers, scored the answers for accuracy, and then repeated the process, then we know how to write the
program that interacts with that box and gets very good at answering the questions. (The program would essentially be a
bounded version of AIXI (http://lesswrong.com/lw/jg1/solomono�_cartesianism/).)

By a similar method, if we had an indestructible box that produced a conversation and questions about it, waited for
natural-language answers to the questions, and scored them for accuracy, then again, we could write a program that would
get very good at answering well. In this sense, we know how to solve computer vision and natural language processing by
brute force. (Of course, natural-language processing is nowhere near “solved” in a practical sense — there is still loads of
work to be done. A brute force solution doesnʼt get you very far in the real world. The point is that, for many AI alignment
problems, we havenʼt even made it to the “we could brute force it” level yet.)

Why do we need the indestructible box in the above examples? Because the way the modern brute-force solution would
work is by considering each Turing machine (up to some complexity limit) as a hypothesis about the box, seeing which ones
are consistent with observation, and then executing actions that lead to high scores coming out of the box (as predicted by
the remaining hypotheses, weighted by simplicity).

Each hypothesis is an opaque Turing machine, and the algorithm never peeks inside: it just asks each hypothesis to predict
what score the box will output if it executes a certain action chain. This means that if the algorithm finds (via exhaustive
search) a plan that maximizes the score coming out of the box, and the box is destructible, then the opaque action chain that
maximizes score is very likely to be the one that pops the box open and alters it so that it always outputs the highest score.
But given an indestructible box, we know how to brute force the answers.
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In fact, roughly speaking, we understand how to solve any reinforcement learning problem via brute force. This is a far cry
from knowing how to practically solve reinforcement learning problems! But it does illustrate a di�erence in kind between
two types of problems. We can (imperfectly and heuristically) divide AI problems up as follows:

There are two types of open problem in AI. One is figuring how to solve in practice problems that we know how to solve in
principle. The other is figuring out how to solve in principle problems that we donʼt even know how to brute force yet.

MIRI focuses on problems of the second class.

What is hard about brute-forcing a diamond-producing agent? To illustrate, Iʼll give a wildly simplified sketch of what an AI
program needs to do in order to act productively within a complex environment:

1. Model the world: Take percepts, and use them to refine some internal representation of the world the system is
embedded in.

2. Predict the world: Take that world-model, and predict what would happen if the system executed various di�erent
plans.

3. Rank outcomes: Rate those possibilities by how good the predicted future is, then execute a plan that leads to a highly-
rated outcome.

 

(https://intelligence.org/wp-content/uploads/2015/07/3-step-AI.png)

 

Consider the modeling step. As discussed above, we know how to write an algorithm that finds good world-models by brute
force: it looks at lots and lots of Turing machines, weighted by simplicity, treats them like they are responsible for its
observations, and throws out the ones that are inconsistent with observation thus far. But (aside from being wildly
impractical) this yields only opaque hypotheses: the system can ask what “sensory bits” each Turing machine outputs, but it
cannot peek inside and examine objects represented within.

If there is some well-defined “score” that gets spit out by the opaque Turing machine (as in a reinforcement learning
problem), then it doesnʼt matter that each hypothesis is a black box; the brute-force algorithm can simply run the black box
on lots of inputs and see which results in the highest score. But if the problem is to build lots of diamond in the real world,
then the agent must work as follows:

1. Build a model of the world — one that represents carbon atoms and covalent bonds, among other things.
2. Predict how the world would change contingent on di�erent actions the system could execute.
3. Look inside each prediction and see which predicted future has the most diamond. Execute the action that leads to more

diamond.

In other words, an AI that is built to reliably a�ect things in the world needs to have world-models that are amenable to
inspection. The system needs to be able to pop open the world model, identify the representations of carbon atoms and
covalent bonds, and estimate how much diamond is in the real world.

We donʼt yet have a clear picture of how to build “inspectable” world-models — not even by brute force. Imagine trying to
write the part of the diamond-making program that builds a world-model: this function needs to take percepts as input and
build a data structure that represents the universe, in a way that allows the system to inspect universe-descriptions and
estimate the amount of diamond in a possible future. Where in the data structure are the carbon atoms? How does the data
structure allow the concept of a “covalent bond” to be formed and labeled, in such a way that it remains accurate even as
the world-model stops representing diamond as made of atoms and starts representing them as made of protons, neutrons,
and electrons instead?
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We need a world-modeling algorithm that builds multi-level representations of the world and allows the system to pursue
the same goals (make diamond) even as its model changes drastically (because it discovers quantum mechanics). This is in
stark contrast to the existing brute-force solutions that use opaque Turing machines as hypotheses.

When humans reason about the universe, we seem to do some sort of reasoning outwards from the middle: we start by
modeling things like people and rocks, and eventually realize that these are made of atoms, which are made of protons and
neutrons and electrons, which are perturbations in quantum fields. At no point are we certain that the lowest level in our
model is the lowest level in reality; as we continue thinking about the world we construct new hypotheses to explain
oddities in our models. What sort of data structure are we using, there? How do we add levels to a world model given new
insights? This is the sort of reasoning algorithm that we do not yet understand how to formalize.

Thatʼs step one in brute-forcing an AI that reliably pursues a simple goal. We also donʼt know how to brute-force steps two or
three yet. By simplifying the problem — talking about diamonds, for example, rather than more realistic goals that raise a
host of other di�iculties — weʼre able to factor out the parts of the problems that we donʼt understand how to solve yet, even
in principle. Our technical agenda (https://intelligence.org/files/TechnicalAgenda.pdf) describes a number of open
problems identified using this method.

3. Figuring out how to solve a problem in principle yields many benefits.

In 1836, Edgar Allen Poe wrote a wonderful essay (http://www.eapoe.org/works/essays/maelzel.htm) on Maelzelʼs
Mechanical Turk, a machine that was purported to be able to play chess. In the essay, Poe argues that the Mechanical Turk
must be a hoax: he begins by arguing that machines cannot play chess, and proceeds to explain (using his knowledge of
stagecra�) how a person could be hidden within the machine. Poeʼs essay is remarkably sophisticated, and a fun read: he
makes reference to the “calculating machine of Mr. Babbage” and argues that it cannot possibly be made to play chess,
because in a calculating machine, each steps follows from the previous step by necessity, whereas “no one move in chess
necessarily follows upon any one other”.

The Mechnical Turk indeed turned out to be a hoax. In 1950, however, Claude Shannon published a rather compelling
counterargument to Poeʼs reasoning in the form of a paper explaining how to program a computer to play perfect chess
(http://vision.unipv.it/IA1/ProgrammingaComputerforPlayingChess.pdf).

Shannonʼs algorithm was by no means the end of the conversation. It took forty-six years to go from that paper to Deep Blue,
a practical chess program which beat the human world champion. Nevertheless, if you were equipped with Poeʼs state of
knowledge and not yet sure whether it was possible for a computer to play chess — because you did not yet understand
algorithms for constructing game trees and doing backtracking search — then you would probably not be ready to start
writing practical chess programs.

Similarly, if you lacked the tools of probability theory — an understanding of Bayesian inference and the limitations that
stem from bad priors — then you probably wouldnʼt be ready to program an AI system that needed to manage uncertainty in
high-stakes situations.

If you are trying to write a program and you canʼt yet say how you would write it given an arbitrarily large computer, then
you probably arenʼt yet ready to design a practical approximation of the brute-force solution yet. Practical chess programs
canʼt generate a full search tree, and so rely heavily on heuristics and approximations; but if you canʼt brute-force the answer
yet given arbitrary amounts of computing power, then itʼs likely that youʼre missing some important conceptual tools.

Marcus Hutter (inventor of AIXI) and Shane Legg (inventor of the Universal Measure of Intelligence
(http://www.vetta.org/documents/42.pdf)) seem to endorse this approach. Their work can be interpreted as a description of
how to find a brute-force solution to any reinforcement learning problem, and indeed, the above description of how to do
this is due to Legg and Hutter.

In fact, the founders of Google DeepMind reference the completion of Shaneʼs thesis as one of four key indicators that the
time was ripe to begin working on AGI: a theoretical framework describing how to solve reinforcement learning problems in
principle demonstrated that modern understanding of the problem had matured to the point where it was time for the
practical work to begin.

Before we gain a formal understanding of the problem, we canʼt be quite sure what the problem is. We may fail to notice
holes in our reasoning; we may fail to bring the appropriate tools to bear; we may not be able to tell when weʼre making
progress. A�er we gain a formal understanding of the problem in principle, weʼll be in a better position to make practical
progress.

The point of developing a formal understanding of a problem is not to run the resulting algorithms. Deep Blue did not work
by computing a full game tree, and DeepMind is not trying to implement AIXI. Rather, the point is to identify and develop the
basic concepts and methods that are useful for solving the problem (such as game trees and backtracking search
algorithms, in the case of chess).

The development of probability theory has been quite useful to the field of AI — not because anyone goes out and attempts
to build a perfect Bayesian reasoner, but because probability theory is the unifying theory for reasoning under uncertainty.
This makes the tools of probability theory useful for AI designs that vary in any number of implementation details: any time
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you build an algorithm that attempts to manage uncertainty, a solid understanding of probabilistic inference is helpful when
reasoning about the domain in which the system will succeed and the conditions under which it could fail.

This is why we think we can identify open problems that we can work on today, and which will reliably be useful no matter
how the generally intelligent machines of the future are designed (or how long it takes to get there). By seeking out
problems that we couldnʼt solve even if the problem were much easier, we hope to identify places where core AGI algorithms
are missing. By developing a formal understanding of how to address those problems in principle, we aim to ensure that
when it comes time to address those problems in practice, programmers have the knowledge they need to develop
solutions that they deeply understand, and the tools they need to ensure that the systems they build are highly reliable.

4. This is an approach researchers have used successfully in the past.

Our main open-problem generator — “what would we be unable to solve even if the problem were easier?” — is actually a
fairly common one used across mathematics and computer science. Itʼs more easy to recognize if we rephrase it slightly:
“can we reduce the problem of building a beneficial AI to some other, simpler problem?”

For example, instead of asking whether you can program a Jupiter-sized computer to produce diamonds, you could
rephrase this as a question about whether we can reduce the diamond maximization problem to known reasoning and
planning procedures. (The current answer is “not yet.”)

This is a fairly standard practice in computer science, where reducing one problem to another is a key feature of
computability theory (https://en.wikipedia.org/wiki/Reduction_(complexity)). In mathematics it is common to achieve a
proof by reducing one problem to another (see, for instance, the famous case of Fermatʼs last theorem
(http://mathworld.wolfram.com/FermatsLastTheorem.html)). This helps one focus on the parts of the problem that arenʼt
solved, and identify topics where foundational understanding is lacking.

As it happens, humans have a pretty good track record when it comes to working on problems such as these. Humanity
hasnʼt been very good at predicting long-term technological trends, but we have reasonable success developing theoretical
foundations for technical problems decades in advance, when we put su�icient e�ort into it. Alan Turing and Alonzo Church
succeeded in developing a robust theory of computation that proved quite useful once computers were developed, in large
part by figuring out how to solve (in principle) problems which they did not yet know how to solve with machines. Andrey
Kolmogorov, similarly, set out to formalize intuitive but not-yet-well-understood methods for managing uncertainty; and he
succeeded. And Claude Shannon and his contemporaries succeeded at this endeavor in the case of chess.

The development of probability theory is a particularly good analogy to our case: it is a field where, for hundreds of years,
philosophers and mathematicians who attempted to formalize their intuitive notions of “uncertainty” repeatedly reasoned
themselves into paradoxes and contradictions. The probability theory at the time, sorely lacking formal foundations, was
dubbed a “theory of misfortune.” Nevertheless, a concerted e�ort by Kolmogorov and others to formalize the theory was
successful, and his e�orts inspired the development of a host of useful tools for designing systems that reason reliably under
uncertainty.

Many people who set out to put foundations under a new field of study (that was intuitively understood on some level but
not yet formalized) have succeeded, and their successes have been practically significant. We aim to do something similar
for a number of open problems pertaining to the design of highly reliable reasoners.

 

The questions MIRI focuses on, such as “how would one ideally handle logical uncertainty?” or “how would one ideally build
multi-level world models of a complex environment?”, exist at a level of generality comparable to Kolmogorovʼs “how would
one ideally handle empirical uncertainty?” or Hutterʼs “how would one ideally maximize reward in an arbitrarily complex
environment?” The historical track record suggests that these are the kinds of problems that it is possible to both (a) see
coming in advance, and (b) work on without access to a concrete practical implementation of a general intelligence.

By identifying parts of the problem that we would still be unable to solve even if the problem was easier, we hope to hone in
on parts of the problem where core algorithms and insights are missing: algorithms and insights that will be useful no
matter what architecture early intelligent machines take on, and no matter how long it takes to create smarter-than-human
machine intelligence.

At present, there are only three people on our research team, and this limits the number of problems that we can tackle
ourselves. But our approach is one that we can scale up dramatically: it has generated a very large number of open
problems, and we have no shortage of questions to study.

This is an approach that has o�en worked well in the past for humans trying to understand how to approach a new field of
study, and I am confident that this approach is pointing us towards some of the core hurdles in this young field of AI
alignment.

 

1. Most of the AI field focuses on problems of the first class. Deep learning, for example, is a very powerful and exciting tool for solving

problems that we know how to brute-force, but which were, up until a few years ago, wildly intractable. Class 1 problems tend to be
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important problems for building more capable AI systems, but lower-priority for ensuring that highly capable systems are aligned with

our interests. ↩

2. In reality, of course, there arenʼt clean separations between these steps. The “prediction” step must be more of a ranking-dependent

planning step, to avoid wasting computation predicting outcomes that will obviously be poorly-ranked. The modeling step depends

on the prediction step, because which parts of the world-model are refined depends on what the world-model is going to be used for.

A realistic agent would need to make use of meta-planning to figure out how to allocate resources between these activities, etc. This

diagram is a fine first approximation, though: if a system doesnʼt do something like modeling the world, predicting outcomes, and

ranking them somewhere along the way, then it will have a hard time steering the future. ↩

3. In reinforcement learning problems, this issue is avoided via a special “reward channel” intended to stand in indirectly for something

the supervisor wants. (For example, the supervisor may push a reward button every time the learner takes an action that seems, to

the supervisor, to be useful for making diamonds.) Then the programmers can, by hand, single out the reward channel inside the

world-model and program the system to execute actions that it predicts lead to high reward. This is much easier than designing

world-models in such a way that the system can reliably identify representations of carbon atoms and covalent bonds within it

(especially if the world is modeled in terms of Newtonian mechanics one day and quantum mechanics the next), but doesnʼt provide a

framework for agents that must autonomously learn how to achieve some goal. Correct behavior in highly intelligent systems will not

always be reducible to maximizing a reward signal controlled by a significantly less intelligent system (e.g., a human supervisor). ↩

4. The idea of a search algorithm that optimizes according to modeled facts about the world rather than just expected percepts may

sound basic, but we havenʼt found any deep insights (or clever hacks) that allow us to formalize this idea (e.g., as a brute-force

algorithm). If we could formalize it, we would likely get a better understanding of the kind of abstract modeling of objects and facts

that is required for self-referential, logically uncertain, programmer-inspectable reasoning (https://intelligence.org/technical-

agenda/). ↩

5. We also suspect that a brute-force algorithm for building multi-level world models would be much more amenable to being “scaled

down” than Solomono� induction, and would therefore lend some insight into how to build multi-level world models in a practical

setting. ↩

6. For example, instead of asking what problems remain when given lots of computing power, you could instead ask whether we can

reduce the problem of building an aligned AI to the problem of making reliable predictions about human behavior: an approach

advocated by others (https://medium.com/ai-control/model-free-decisions-6e6609f5d99e). ↩
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Yudkowsky and Christiano discuss “Takeo� Speeds” (https://intelligence.org/2021/11/22/yudkowsky-and-
christiano-discuss-takeo�-speeds/)



Using machine learning to address AI risk (https://intelligence.org/2017/02/28/using-machine-learning/)

Comments on OpenAIʼs "Planning for AGI and beyond" (https://intelligence.org/2023/03/14/comments-on-
openais-planning-for-agi-and-beyond/)



... and many more (https://intelligence.org/category/analysis/).
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Saulius  

Reply •

− ⚑

8 years ago

I see how such research decreases some risks, but I also see how it could cause AGI being developed sooner,
which increases X-risks.

 1  1

jandrewrogers  

Reply •

− ⚑

8 years ago

One point on which the article gives the wrong impression:

The computer science for how to construct general, inspectable world-models, as meant in the article, exists. The
initial breakthroughs were in 2007 and it became theoretically mature maybe six years ago. It has been applied in
extreme-scale systems for a couple years now, albeit quietly.

The solution to this problem is not obvious (except in hindsight) but elegant, practical solutions exist. Per footnote
5, it scales nicely and even at small scales renders some things tractable that were not previously. If this is
considered an essential problem that needs to be researched, it is much further along than seems to be suggested
here.

 0  0

Nate Soares  

Reply •

− ⚑Mod > jandrewrogers

8 years ago

What research are you referring to? I have seen a number of attempts to attack the problem that
ultimately fail to �t the bill (as far as I can tell). However, it's quite possible that we've missed something
:-)
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jandrewrogers  

see more

Reply •

− ⚑> Nate Soares

8 years ago

This problem is known to be in the class of algorithm/data structure problems that are only
tractably expressible using representations that can directly compute relationships in and
between topological spaces. When this class was identi�ed about a decade ago, several
computer science problems that have resisted attempts at general tractability at scale were
shown to be in this class (polygon indexing, constraint processing, et al). The genesis of this
research was the design of backends for Google Earth because, as was discovered, general
representations of non-trivial dynamics in the physical world fall into this class.

Traditional algorithms and data structures implicitly exclude this case; you can't attack the
problem without inventing a lot of computer science from �rst principles. The elementary
problem of how to even e�ciently represent these computational models was only solved in
2007. Since then, people have worked out how to implement almost any software problem with
these representations; the compressive, dimensionality-agnostic data structure that acts as the
core organization of these models is extremely general and parallelizable.

At a mundane level, the real power is that you can continuously fuse every data source
imaginable into a single, seamless world model that is organized, at a computational level, like
the system you are modeling with all relationships preserved at every level of detail. Most actual
use cases take it a step further; because relationships between entities are inductively
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David Krueger  

Reply •

− ⚑> jandrewrogers

8 years ago

What is the name of the technique? Can you provide a reference?

 0  0
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Fascinating

 0  0
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