
ML Systems Will Have Weird Failure Modes
JAN 25, 2022 • 8 MIN READ

Previously, I've argued that future ML systems might exhibit

, and that thought experiments towards predicting these

capabilities and their consequences.

In this post I’ll describe a particular thought experiment in detail. We’ll see that taking

thought experiments seriously often surfaces future risks that seem "weird" and alien from

the point of view of current systems. I’ll also describe how I tend to engage with these

thought experiments: I usually start out intuitively skeptical, but when I reflect on emergent

behavior I find that some (but not all) of the skepticism goes away. The remaining skepticism

comes from ways that the thought experiment clashes with the ontology of neural networks,

and I’ll describe the approaches I usually take to address this and generate actionable

takeaways.

Thought Experiment: Deceptive Alignment

Recall that the runs the thought experiment of assuming that an ML

agent is a perfect optimizer (with respect to some "intrinsic" reward function). I’m going to

examine one implication of this assumption, in the context of an agent being trained based

on some "extrinsic" reward function (which is provided by the system designer and not

equal to).

Specifically, consider a training process where in step , a model has parameters and

generates an action (its output on that training step, e.g. an attempted backflip assuming

it is being trained to do backflips). The action is then judged according to the extrinsic

reward function , and the parameters are updated to some new value that are

intended to increase 's value under . At some point, the model is then deployed with

unfamiliar, emergent

capabilities provide one approach

optimization anchor

R

R∗

R

t θt

at

at

R∗ θt+1

at+1 R∗

Bounded Regret 

Subscribe (free)

https://bounded-regret.ghost.io/p/1527e9dd-c48d-4941-9b14-4f7293318d5c/
https://bounded-regret.ghost.io/p/a2d733a7-108a-4587-97fb-db90f66ce030/
https://bounded-regret.ghost.io/p/a2d733a7-108a-4587-97fb-db90f66ce030/
https://bounded-regret.ghost.io/

final parameters , and continues to take actions. The following diagram illustrates this

process:

Now, let’s assume that the model is a perfect optimizer whose objective is to maximize

the discounted value of an intrinsic reward . That is, picks the action satisfying

.

(I know that this is an unrealistic assumption. We’ll examine the assumption in detail in the

next section, but for now please grant it even if it requires suspending disbelief.)

What action will pick? Let’s define and --that

is, maximizes the (instantaneous) intrinsic reward while maximizes the extrinsic

reward.

Assuming that is close to 1, the model wants to be picked on as many future rounds as

possible (including at deployment time). If plays myopically, this means it would pick

. However, this is not the optimal non-myopic action: if , then will be

updated towards producing outputs less like and more like , so outputting in the

current round leads to fewer outputs in future rounds.

Instead, I think the optimal non-myopic action is approximately the following: during training

time, output on every time step, so that the training process doesn’t update (since it’s

already optimal) and hence . This guarantees that the deployed agent

is , which is now free to output on every time step without risk of being modified by the

training process.

θT

θt

R ≠ R∗ θt at

at = argmaxa E[∑∞
s=0 γ−sR(at+s) ∣ at = a]

at θt aR = argmaxa R(a) a∗ = argmaxa R∗(a)

aR a∗

γ aR

θt

at = aR at = aR θt+1

aR a∗ aR

aR

a∗ θ

θt = θt+1 = ⋯ = θT

θt aR

[1]

The myopic and non-myopic outcomes are illustrated in the figure below:

Myopic and non-myopic agents with an intrinsic reward, . The myopic agent plays high intrinsic-reward actions

during training, but is eventually modified to output action with high extrinsic reward . The non-myopic agent

instead plays during training so that it can pursue its intrinsic reward at deployment, by playing at all post-

deployment time steps.

To put it another way–the model’s behavior will look aligned with during the training

process, but will switch to being non-aligned once deployed: so-called "deceptive

alignment". This behavior is unintuitive to me, since it shows that a system’s behavior can

shift significantly between train and test, even in the absence of an obvious distribution shift

between train and test outputs .

Engaging with Deceptive Alignment

When I first heard the above argument, I thought it was pretty crazy and implausible, mainly

because my intuition said this "just wasn't how ML systems worked". When I think about

why I feel that way, I realize it’s because the scenario invokes capabilities that ML is

currently bad at: long-term planning and understanding complex features of the

environment (i.e. the training process and its ramifications). However, emergence implies

that these properties could easily appear in the future, even without explicit design . As a

result, I’ve come to discount this particular intuition.

However, I do think there are subtler reasons to think the deceptive alignment story won’t

play out as written. Here are a few:

R

a∗ R∗

a∗ aR

R∗

[2]

[3]

I find these points persuasive for showing that deceptive alignment as explicitly written is

not that likely, but they also don't imply that there's nothing to worry about. Mostly they are

an argument that your system might be aligned and might be misaligned, that if it is

misaligned it won’t be exactly in the form of deceptive alignment, but ultimately what you

get depends on inductive bias in an unknown way. This isn't particularly reassuring.

What I take away from thought experiments. Per the discussion above, the failure mode in

my head is not "deceptive alignment as written above". Instead it’s "something kind of like

the story above but probably different in lots of details". This makes it harder to reason

about, but I think there are still some useful takeaways:

It’s not clear why the model would come to be optimizing a reward function in the

first place. Yes, it is the case that deceptively aligned models achieve the global

minimum of training loss, so in that sense they are incentivized by the training process.

But so is an actually aligned model, so which one you end up with has to depend on the

inductive bias of the training process.

1 θ R

Reward functions are simpler than policies and typically learned faster. So by the time

the system is smart enough to have long-term plans, it will already have a very good

representation of its intended reward function. We thus might hope that most of the

model's internal representations are devoted to achieving high reward in a

straightforward manner rather than through long-term deception.

2

To the extent that a model is not aligned, it probably won’t be the case that it's

deceptively aligned with an explicit reward function R---that's a very specific type of

agent and most agents (including humans) are not maximizing any reward function,

except in the trivial sense of "assign reward 1 to whatever it was going to do anyway,

and 0 to everything else".

3

Deceptive alignment is a specific complex story about the future, and complex stories

are almost always wrong.

4

After thinking about deceptive alignment, I am more interested in supervising a model’s

process (rather than just its outputs), since there are many models that achieve low

training error but generalize catastrophically. One possible approach is to supervise the

latent representations using e.g. interpretability methods.

So to summarize my takeaways: be more interested in interpretability (especially as it

relates to training latent representations), try to identify and study "drives" of ML systems,

and look harder for examples where larger models have worse OOD behavior (possibly

focusing on high-dimensional output spaces).

Other weird failures. Other weird failures that I think don’t get enough attention, even

though I also don’t think they will play out as written, are Hubinger et al.'s

 (AI acquires an "inner objective", somewhat similar to deceptive

alignment), and Part I of Paul Christiano’s (the world becomes very

complicated and AI systems create elaborate Potemkin villages for humans).

Paul Christiano’s story in particular has made me more interested in understanding how

reward hacking interacts with the sophistication of the supervisor: For instance, how much

more readily do neural networks fool humans who have 5 seconds to think, vs. 2 minutes or

30 minutes? I more generally want to understand how reward hacking depends

quantitatively on both supervision quality and model capacity (qualitatively, we expect

higher quality less hacking and higher capacity more hacking). Understanding this

quantitative relation would help ground Paul’s story, since he imagines a world where

humans have built extremely sophisticated systems for supervising ML models, but

eventually the ML models become even more powerful and game the supervision signal

anyways.

While I don't think neural nets will be literal optimizers, I do think it’s likely that they will

exhibit "drives", in the same way that humans exhibit drives like hunger, curiosity,

desire for social approval, etc. that lead them to engage in long-term coherent plans.

This seems like enough to create similar problems to deceptive alignment, so I am now

more interested in understanding such drives and how they arise.

Since deceptive alignment is a type of "out-of-distribution" behavior (based on the

difference between train and deployment), it has renewed my interest in understanding

whether larger models become more brittle OOD. So far the empirical evidence is in

, but deceptive alignment is an argument that asymptotically we

might expect the trend to flip, especially for tasks with large output spaces (e.g. policies,

language, or code) where "drives" can more easily manifest.

the

opposite direction

Risks from

Learned Optimization

AI failure story

→ →

https://arxiv.org/abs/2006.16241?ref=bounded-regret.ghost.io
https://arxiv.org/abs/1906.01820?ref=bounded-regret.ghost.io
https://www.alignmentforum.org/posts/HBxe6wdjxK239zajf/what-failure-looks-like?ref=bounded-regret.ghost.io

What To Do About Weird Emergent Failures

When thinking about how to handle emergent risks, I often reflect on the example of

uranium. For context, an atomic bomb is pretty much just a bunch of uranium put together--

-once you get enough, the reaction becomes self-sustaining---making it a good example of

More Is Different.

The first nuclear reaction (not a bomb, but a in an abandoned football

stadium in Chicago) was engineered by Enrico Fermi. The reaction required 12,400 pounds

of uranium metal piled 57 layers high. Left unsupervised, a 57-layer pile would consume

itself within two hours and kill everyone in the vicinity. On the other hand, a 56-layer pile

would do nothing.

Fermi had a good understanding of nuclear physics and understood, from careful monitoring

and underlying theory, that the pile would pass the critical threshold between layers 56 and

57. He also knew that cadmium rods would absorb neutrons and strongly inhibit the

reaction. These rods were set up and the entire apparatus was carefully controlled to go

only slightly supercritical. He brought the reaction to half a watt for several minutes before

shutting it back down (see , pp. 524).

With AI, we currently lack both Fermi's conceptual understanding of the underlying risk

factors and his ability to continuously measure them. We have neither a cadmium rod nor a

measure of reaction criticality. But I think we can get there, by combining these weird

thought experiments with , which will be the topic of

the next post.

pile of uranium

The Making of the Atomic Bomb

carefully chosen empirical experiments

Things are more complicated in reality, since is updated even when is optimal (due

to noise in the training process). However, we’ll ignore this for purposes of the example.

1 θt at

↩︎

Of course, there is still some distribution shift, since the agent can observe whether it is

being trained or deployed. But this is a relatively minor and unintuitive shift compared

2

https://en.wikipedia.org/wiki/Chicago_Pile-1?ref=bounded-regret.ghost.io
https://smile.amazon.com/Making-Atomic-Bomb-Richard-Rhodes/dp/1451677618?ref=bounded-regret.ghost.io
https://bounded-regret.ghost.io/p/74d500d2-a980-4720-984a-c016284ecdc2/

        

2 Comments

Sign in to join the conversation.

to what is typically studied. ↩︎

Of course, emergence doesn’t mean that we can just predict whatever we want–we’d

need some reason to expect these specific capabilities to emerge. Long-term planning

and environmental awareness are both useful for a wide variety of tasks, making them

likely to emerge when training powerful models on a diverse data distribution.

3

↩︎

Jacob Steinhardt

Shen Zhuoran 4 months ago

I assume the text before footnote 2 meant to say "train and test inputs"? Got me

confused fit a while LoL.

♡ 0

𝕮𝖎𝖓𝖊𝖗𝖆 1 month ago

There's an equation here that I don't understand:

$$a_t = \operatorname{argmax}{a} \mathbb{E}[\sum{s=0}^{\infty} \gamma^{-s}

R(a_{t+s}) \mid a_t = a]$$

Particularly, I'm confused about why it's γ^{-s} and not γ^{s}?

AIUI, γ is the discount factor and $\gamma \in [0, 1]$.

I'm having trouble making sense of the equation as written assuming a reinforcement

learning context.

♡ 0

https://www.facebook.com/sharer.php?u=https://bounded-regret.ghost.io/ml-systems-will-have-weird-failure-modes-2/
https://twitter.com/intent/tweet?url=https://bounded-regret.ghost.io/ml-systems-will-have-weird-failure-modes-2/&text=ML%20Systems%20Will%20Have%20Weird%20Failure%20Modes
https://pinterest.com/pin/create/button/?url=https://bounded-regret.ghost.io/ml-systems-will-have-weird-failure-modes-2/&media=&description=ML%20Systems%20Will%20Have%20Weird%20Failure%20Modes
https://www.linkedin.com/shareArticle?mini=true&url=https://bounded-regret.ghost.io/ml-systems-will-have-weird-failure-modes-2/&title=ML%20Systems%20Will%20Have%20Weird%20Failure%20Modes
https://reddit.com/submit?url=https://bounded-regret.ghost.io/ml-systems-will-have-weird-failure-modes-2/&title=ML%20Systems%20Will%20Have%20Weird%20Failure%20Modes
https://www.tumblr.com/widgets/share/tool?canonicalUrl=https://bounded-regret.ghost.io/ml-systems-will-have-weird-failure-modes-2/&title=ML%20Systems%20Will%20Have%20Weird%20Failure%20Modes
http://vk.com/share.php?url=https://bounded-regret.ghost.io/ml-systems-will-have-weird-failure-modes-2/&title=ML%20Systems%20Will%20Have%20Weird%20Failure%20Modes
https://getpocket.com/edit?url=https://bounded-regret.ghost.io/ml-systems-will-have-weird-failure-modes-2/
https://t.me/share/url?url=https://bounded-regret.ghost.io/ml-systems-will-have-weird-failure-modes-2/&text=ML%20Systems%20Will%20Have%20Weird%20Failure%20Modes

Powered by Cove

 Previous Post Next Post 

 

Powered by Ghost

Bounded Regret

https://cove.chat/
https://bounded-regret.ghost.io/which-anchors-do-i-use/
https://bounded-regret.ghost.io/empirical-findings-generalize-surprisingly-far/
https://twitter.com/JacobSteinhardt
https://feedly.com/i/subscription/feed/https://bounded-regret.ghost.io/rss/
https://ghost.org/
https://bounded-regret.ghost.io/

