
Gibbs sampling
In statistics, Gibbs sampling or a Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm for
sampling from a specified multivariate probability distribution when direct sampling from the joint distribution
is difficult, but sampling from the conditional distribution is more practical. This sequence can be used to
approximate the joint distribution (e.g., to generate a histogram of the distribution); to approximate the marginal
distribution of one of the variables, or some subset of the variables (for example, the unknown parameters or
latent variables); or to compute an integral (such as the expected value of one of the variables). Typically, some
of the variables correspond to observations whose values are known, and hence do not need to be sampled.

Gibbs sampling is commonly used as a means of statistical inference, especially Bayesian inference. It is a
randomized algorithm (i.e. an algorithm that makes use of random numbers), and is an alternative to
deterministic algorithms for statistical inference such as the expectation–maximization algorithm (EM).

As with other MCMC algorithms, Gibbs sampling generates a Markov chain of samples, each of which is
correlated with nearby samples. As a result, care must be taken if independent samples are desired. Generally,
samples from the beginning of the chain (the burn-in period) may not accurately represent the desired
distribution and are usually discarded.

Gibbs sampling is named after the physicist Josiah Willard Gibbs, in reference to an analogy between the
sampling algorithm and statistical physics. The algorithm was described by brothers Stuart and Donald Geman
in 1984, some eight decades after the death of Gibbs,[1] and became popularized in the statistics community for
calculating marginal probability distribution, especially the posterior distribution.[2]

In its basic version, Gibbs sampling is a special case of the Metropolis–Hastings algorithm. However, in its
extended versions (see below), it can be considered a general framework for sampling from a large set of
variables by sampling each variable (or in some cases, each group of variables) in turn, and can incorporate the
Metropolis–Hastings algorithm (or methods such as slice sampling) to implement one or more of the sampling
steps.

Gibbs sampling is applicable when the joint distribution is not known explicitly or is difficult to sample from
directly, but the conditional distribution of each variable is known and is easy (or at least, easier) to sample
from. The Gibbs sampling algorithm generates an instance from the distribution of each variable in turn,
conditional on the current values of the other variables. It can be shown that the sequence of samples constitutes
a Markov chain, and the stationary distribution of that Markov chain is just the sought-after joint distribution.[3]
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Gibbs sampling is particularly well-adapted to sampling the posterior distribution of a Bayesian network, since
Bayesian networks are typically specified as a collection of conditional distributions.

Gibbs sampling, in its basic incarnation, is a special case of the Metropolis–Hastings algorithm. The point of
Gibbs sampling is that given a multivariate distribution it is simpler to sample from a conditional distribution
than to marginalize by integrating over a joint distribution. Suppose we want to obtain  samples of

 from a joint distribution . Denote the th sample by 

. We proceed as follows:

1. We begin with some initial value .

2. We want the next sample. Call this next sample . Since 

is a vector, we sample each component of the vector, , from the distribution of that
component conditioned on all other components sampled so far. But there is a catch: we condition
on 's components up to , and thereafter condition on 's components, starting from

 to . To achieve this, we sample the components in order, starting from the first

component. More formally, to sample , we update it according to the distribution specified by

. We use the value that the th component had in

the th sample, not the th sample.
3. Repeat the above step  times.

If such sampling is performed, these important facts hold:

The samples approximate the joint distribution of all variables.
The marginal distribution of any subset of variables can be approximated by simply considering
the samples for that subset of variables, ignoring the rest.
The expected value of any variable can be approximated by averaging over all the samples.

When performing the sampling:

The initial values of the variables can be determined randomly or by some other algorithm such as
expectation–maximization.
It is not actually necessary to determine an initial value for the first variable sampled.
It is common to ignore some number of samples at the beginning (the so-called burn-in period),
and then consider only every th sample when averaging values to compute an expectation. For
example, the first 1,000 samples might be ignored, and then every 100th sample averaged,
throwing away all the rest. The reason for this is that (1) the stationary distribution of the Markov
chain is the desired joint distribution over the variables, but it may take a while for that stationary
distribution to be reached; (2) successive samples are not independent of each other but form a
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Markov chain with some amount of correlation. Sometimes, algorithms can be used to determine
the amount of autocorrelation between samples and the value of  (the period between samples
that are actually used) computed from this, but in practice there is a fair amount of "black magic"
involved.
The process of simulated annealing is often used to reduce the "random walk" behavior in the
early part of the sampling process (i.e. the tendency to move slowly around the sample space,
with a high amount of autocorrelation between samples, rather than moving around quickly, as is
desired). Other techniques that may reduce autocorrelation are collapsed Gibbs sampling,
blocked Gibbs sampling, and ordered overrelaxation; see below.

Furthermore, the conditional distribution of one variable given all others is proportional to the joint distribution:

"Proportional to" in this case means that the denominator is not a function of  and thus is the same for all
values of ; it forms part of the normalization constant for the distribution over . In practice, to determine
the nature of the conditional distribution of a factor , it is easiest to factor the joint distribution according to
the individual conditional distributions defined by the graphical model over the variables, ignore all factors that
are not functions of  (all of which, together with the denominator above, constitute the normalization
constant), and then reinstate the normalization constant at the end, as necessary. In practice, this means doing
one of three things:

1. If the distribution is discrete, the individual probabilities of all possible values of  are computed,
and then summed to find the normalization constant.

2. If the distribution is continuous and of a known form, the normalization constant will also be
known.

3. In other cases, the normalization constant can usually be ignored, as most sampling methods do
not require it.

Gibbs sampling is commonly used for statistical inference (e.g. determining the best value of a parameter, such
as determining the number of people likely to shop at a particular store on a given day, the candidate a voter will
most likely vote for, etc.). The idea is that observed data is incorporated into the sampling process by creating
separate variables for each piece of observed data and fixing the variables in question to their observed values,
rather than sampling from those variables. The distribution of the remaining variables is then effectively a
posterior distribution conditioned on the observed data.

The most likely value of a desired parameter (the mode) could then simply be selected by choosing the sample
value that occurs most commonly; this is essentially equivalent to maximum a posteriori estimation of a
parameter. (Since the parameters are usually continuous, it is often necessary to "bin" the sampled values into
one of a finite number of ranges or "bins" in order to get a meaningful estimate of the mode.) More commonly,
however, the expected value (mean or average) of the sampled values is chosen; this is a Bayes estimator that

Relation of conditional distribution and joint distribution
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takes advantage of the additional data about the entire distribution that is available from Bayesian sampling,
whereas a maximization algorithm such as expectation maximization (EM) is capable of only returning a single
point from the distribution. For example, for a unimodal distribution the mean (expected value) is usually
similar to the mode (most common value), but if the distribution is skewed in one direction, the mean will be
moved in that direction, which effectively accounts for the extra probability mass in that direction. (If a
distribution is multimodal, the expected value may not return a meaningful point, and any of the modes is
typically a better choice.)

Although some of the variables typically correspond to parameters of interest, others are uninteresting
("nuisance") variables introduced into the model to properly express the relationships among variables.
Although the sampled values represent the joint distribution over all variables, the nuisance variables can simply
be ignored when computing expected values or modes; this is equivalent to marginalizing over the nuisance
variables. When a value for multiple variables is desired, the expected value is simply computed over each
variable separately. (When computing the mode, however, all variables must be considered together.)

Supervised learning, unsupervised learning and semi-supervised learning (aka learning with missing values) can
all be handled by simply fixing the values of all variables whose values are known, and sampling from the
remainder.

For observed data, there will be one variable for each observation—rather than, for example, one variable
corresponding to the sample mean or sample variance of a set of observations. In fact, there generally will be no
variables at all corresponding to concepts such as "sample mean" or "sample variance". Instead, in such a case
there will be variables representing the unknown true mean and true variance, and the determination of sample
values for these variables results automatically from the operation of the Gibbs sampler.

Generalized linear models (i.e. variations of linear regression) can sometimes be handled by Gibbs sampling as
well. For example, probit regression for determining the probability of a given binary (yes/no) choice, with
normally distributed priors placed over the regression coefficients, can be implemented with Gibbs sampling
because it is possible to add additional variables and take advantage of conjugacy. However, logistic regression
cannot be handled this way. One possibility is to approximate the logistic function with a mixture (typically 7–
9) of normal distributions. More commonly, however, Metropolis–Hastings is used instead of Gibbs sampling.

Suppose that a sample  is taken from a distribution depending on a parameter vector  of length , with
prior distribution . It may be that  is very large and that numerical integration to find the
marginal densities of the  would be computationally expensive. Then an alternative method of calculating the
marginal densities is to create a Markov chain on the space  by repeating these two steps:

1. Pick a random index 
2. Pick a new value for  according to 

These steps define a reversible Markov chain with the desired invariant distribution . This can be proved as
follows. Define  if  for all  and let  denote the probability of a jump from  to

. Then, the transition probabilities are
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So

since  is an equivalence relation. Thus the detailed balance equations are satisfied, implying the chain is
reversible and it has invariant distribution .

In practice, the index  is not chosen at random, and the chain cycles through the indexes in order. In general
this gives a non-stationary Markov process, but each individual step will still be reversible, and the overall
process will still have the desired stationary distribution (as long as the chain can access all states under the
fixed ordering).

Let  denote observations generated from the sampling distribution  and  be a prior supported on the
parameter space . Then one of the central goals of the Bayesian statistics is to approximate the posterior
density

where the marginal likelihood  is assumed to be finite for all .

To explain the Gibbs sampler, we additionally assume that the parameter space  is decomposed as

,

where  represents the Cartesian product. Each component parameter space  can be a set of scalar
components, subvectors, or matrices.

Define a set  that complements the . Essential ingredients of the Gibbs sampler is the -th full conditional
posterior distribution for each 

.

The following algorithm details a generic Gibbs sampler:

Gibbs sampler in Bayesian inference and its relation to information
theory
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A pictorial description of the Gibbs sampling algorithm [4]

Schematic description of the information equality associated with the Gibbs sampler
at the i-th step within a cycle [4]
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Note that Gibbs sampler is operated by the iterative Monte Carlo scheme within a cycle. The  number of
samples  drawn by the above algorithm formulates Markov Chains with the invariant distribution to
be the target density .

Now, for each , define the following information theoretic quantities:

namely, posterior mutual information, posterior differential entropy, and posterior conditional differential
entropy, respectively. We can similarly define information theoretic quantities , , and

 by interchanging the  and  in the defined quantities. Then, the following  equations hold.[4]

.

The mutual information  quantifies the reduction in uncertainty of random quantity  once we know
, a posteriori. It vanishes if and only if  and  are marginally independent, a posterior. The mutual

information  can be interpreted as the quantity that is transmitted from the -th step to the -th
step within a single cycle of the Gibbs sampler.

Numerous variations of the basic Gibbs sampler exist. The goal of these variations is to reduce the
autocorrelation between samples sufficiently to overcome any added computational costs.

A blocked Gibbs sampler groups two or more variables together and samples from their joint
distribution conditioned on all other variables, rather than sampling from each one individually. For

Variations and extensions

Blocked Gibbs sampler
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example, in a hidden Markov model, a blocked Gibbs sampler might sample from all the latent
variables making up the Markov chain in one go, using the forward-backward algorithm.

A collapsed Gibbs sampler integrates out (marginalizes over) one or more variables when
sampling for some other variable. For example, imagine that a model consists of three variables
A, B, and C. A simple Gibbs sampler would sample from p(A | B,C), then p(B | A,C), then p(C |
 A,B). A collapsed Gibbs sampler might replace the sampling step for A with a sample taken from
the marginal distribution p(A | C), with variable B integrated out in this case. Alternatively, variable
B could be collapsed out entirely, alternately sampling from p(A | C) and p(C | A) and not sampling
over B at all. The distribution over a variable A that arises when collapsing a parent variable B is
called a compound distribution; sampling from this distribution is generally tractable when B is the
conjugate prior for A, particularly when A and B are members of the exponential family. For more
information, see the article on compound distributions or Liu (1994).[5]

In hierarchical Bayesian models with categorical variables, such as latent Dirichlet allocation and various other
models used in natural language processing, it is quite common to collapse out the Dirichlet distributions that
are typically used as prior distributions over the categorical variables. The result of this collapsing introduces
dependencies among all the categorical variables dependent on a given Dirichlet prior, and the joint distribution
of these variables after collapsing is a Dirichlet-multinomial distribution. The conditional distribution of a given
categorical variable in this distribution, conditioned on the others, assumes an extremely simple form that makes
Gibbs sampling even easier than if the collapsing had not been done. The rules are as follows:

1. Collapsing out a Dirichlet prior node affects only the parent and children nodes of the prior. Since
the parent is often a constant, it is typically only the children that we need to worry about.

2. Collapsing out a Dirichlet prior introduces dependencies among all the categorical children
dependent on that prior — but no extra dependencies among any other categorical children. (This
is important to keep in mind, for example, when there are multiple Dirichlet priors related by the
same hyperprior. Each Dirichlet prior can be independently collapsed and affects only its direct
children.)

3. After collapsing, the conditional distribution of one dependent children on the others assumes a
very simple form: The probability of seeing a given value is proportional to the sum of the
corresponding hyperprior for this value, and the count of all of the other dependent nodes
assuming the same value. Nodes not dependent on the same prior must not be counted. The
same rule applies in other iterative inference methods, such as variational Bayes or expectation
maximization; however, if the method involves keeping partial counts, then the partial counts for
the value in question must be summed across all the other dependent nodes. Sometimes this
summed up partial count is termed the expected count or similar. The probability is proportional to
the resulting value; the actual probability must be determined by normalizing across all the
possible values that the categorical variable can take (i.e. adding up the computed result for each
possible value of the categorical variable, and dividing all the computed results by this sum).

4. If a given categorical node has dependent children (e.g. when it is a latent variable in a mixture
model), the value computed in the previous step (expected count plus prior, or whatever is
computed) must be multiplied by the actual conditional probabilities (not a computed value that is

Collapsed Gibbs sampler

Implementing a collapsed Gibbs sampler

Collapsing Dirichlet distributions
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proportional to the probability!) of all children given their parents. See the article on the Dirichlet-
multinomial distribution for a detailed discussion.

5. In the case where the group membership of the nodes dependent on a given Dirichlet prior may
change dynamically depending on some other variable (e.g. a categorical variable indexed by
another latent categorical variable, as in a topic model), the same expected counts are still
computed, but need to be done carefully so that the correct set of variables is included. See the
article on the Dirichlet-multinomial distribution for more discussion, including in the context of a
topic model.

In general, any conjugate prior can be collapsed out, if its only children have distributions conjugate to it. The
relevant math is discussed in the article on compound distributions. If there is only one child node, the result
will often assume a known distribution. For example, collapsing an inverse-gamma-distributed variance out of a
network with a single Gaussian child will yield a Student's t-distribution. (For that matter, collapsing both the
mean and variance of a single Gaussian child will still yield a Student's t-distribution, provided both are
conjugate, i.e. Gaussian mean, inverse-gamma variance.)

If there are multiple child nodes, they will all become dependent, as in the Dirichlet-categorical case. The
resulting joint distribution will have a closed form that resembles in some ways the compound distribution,
although it will have a product of a number of factors, one for each child node, in it.

In addition, and most importantly, the resulting conditional distribution of one of the child nodes given the
others (and also given the parents of the collapsed node(s), but not given the children of the child nodes) will
have the same density as the posterior predictive distribution of all the remaining child nodes. Furthermore, the
posterior predictive distribution has the same density as the basic compound distribution of a single node,
although with different parameters. The general formula is given in the article on compound distributions.

For example, given a Bayes network with a set of conditionally independent identically distributed Gaussian-
distributed nodes with conjugate prior distributions placed on the mean and variance, the conditional
distribution of one node given the others after compounding out both the mean and variance will be a Student's
t-distribution. Similarly, the result of compounding out the gamma prior of a number of Poisson-distributed
nodes causes the conditional distribution of one node given the others to assume a negative binomial
distribution.

In these cases where compounding produces a well-known distribution, efficient sampling procedures often
exist, and using them will often (although not necessarily) be more efficient than not collapsing, and instead
sampling both prior and child nodes separately. However, in the case where the compound distribution is not
well-known, it may not be easy to sample from, since it generally will not belong to the exponential family and
typically will not be log-concave (which would make it easy to sample using adaptive rejection sampling, since
a closed form always exists).

In the case where the child nodes of the collapsed nodes themselves have children, the conditional distribution
of one of these child nodes given all other nodes in the graph will have to take into account the distribution of
these second-level children. In particular, the resulting conditional distribution will be proportional to a product
of the compound distribution as defined above, and the conditional distributions of all of the child nodes given
their parents (but not given their own children). This follows from the fact that the full conditional distribution is

Collapsing other conjugate priors
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proportional to the joint distribution. If the child nodes of the collapsed nodes are continuous, this distribution
will generally not be of a known form, and may well be difficult to sample from despite the fact that a closed
form can be written, for the same reasons as described above for non-well-known compound distributions.
However, in the particular case that the child nodes are discrete, sampling is feasible, regardless of whether the
children of these child nodes are continuous or discrete. In fact, the principle involved here is described in fair
detail in the article on the Dirichlet-multinomial distribution.

A Gibbs sampler with ordered overrelaxation samples a given odd number of candidate values
for  at any given step and sorts them, along with the single value for  according to some

well-defined ordering. If  is the sth smallest in the sorted list then the  is selected as the

sth largest in the sorted list. For more information, see Neal (1995).[6]

It is also possible to extend Gibbs sampling in various ways. For example, in the case of variables whose
conditional distribution is not easy to sample from, a single iteration of slice sampling or the Metropolis–
Hastings algorithm can be used to sample from the variables in question. It is also possible to incorporate
variables that are not random variables, but whose value is deterministically computed from other variables.
Generalized linear models, e.g. logistic regression (aka "maximum entropy models"), can be incorporated in this
fashion. (BUGS, for example, allows this type of mixing of models.)

There are two ways that Gibbs sampling can fail. The first is when there are islands of high-probability states,
with no paths between them. For example, consider a probability distribution over 2-bit vectors, where the
vectors (0,0) and (1,1) each have probability  12  , but the other two vectors (0,1) and (1,0) have probability zero.

Gibbs sampling will become trapped in one of the two high-probability vectors, and will never reach the other
one. More generally, for any distribution over high-dimensional, real-valued vectors, if two particular elements
of the vector are perfectly correlated (or perfectly anti-correlated), those two elements will become stuck, and
Gibbs sampling will never be able to change them.

The second problem can happen even when all states have nonzero probability and there is only a single island
of high-probability states. For example, consider a probability distribution over 100-bit vectors, where the all-
zeros vector occurs with probability  12  , and all other vectors are equally probable, and so have a probability of

 each. If you want to estimate the probability of the zero vector, it would be sufficient to take 100

or 1000 samples from the true distribution. That would very likely give an answer very close to  12  . But you

would probably have to take more than  samples from Gibbs sampling to get the same result. No computer
could do this in a lifetime.

Gibbs sampler with ordered overrelaxation

Other extensions

Failure modes
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This problem occurs no matter how long the burn-in period is. This is because in the true distribution, the zero
vector occurs half the time, and those occurrences are randomly mixed in with the nonzero vectors. Even a
small sample will see both zero and nonzero vectors. But Gibbs sampling will alternate between returning only
the zero vector for long periods (about  in a row), then only nonzero vectors for long periods (about  in a
row). Thus convergence to the true distribution is extremely slow, requiring much more than  steps; taking
this many steps is not computationally feasible in a reasonable time period. The slow convergence here can be
seen as a consequence of the curse of dimensionality. A problem like this can be solved by block sampling the
entire 100-bit vector at once. (This assumes that the 100-bit vector is part of a larger set of variables. If this
vector is the only thing being sampled, then block sampling is equivalent to not doing Gibbs sampling at all,
which by hypothesis would be difficult.)

The OpenBUGS software (Bayesian inference Using Gibbs Sampling) does a Bayesian analysis
of complex statistical models using Markov chain Monte Carlo.

JAGS (Just another Gibbs sampler) is a GPL program for analysis of Bayesian hierarchical
models using Markov Chain Monte Carlo.

Church is free software for performing Gibbs inference over arbitrary distributions that are
specified as probabilistic programs.

PyMC is an open source Python library for Bayesian learning of general Probabilistic Graphical
Models.
Turing (https://turing.ml/) is an open source Julia library for Bayesian Inference using probabilistic
programming.
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